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Bethe Ansatz Results for Hubbard Chains 
with Toroidal Boundary Conditions 
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We solve exactly the problem of a one-dimensional repulsive-U Hubbard chain 
with toroidal boundary conditions (HTB) using the Bethe ansatz approach. We 
calculate analytically the finite-size corrections to the ground-state energy in the 
half-filled case and use this expression to derive charge and spin stiffnesses with 
no assumptions. We then use a "particle-hole" transformation to calculate the 
finite-size corrections for the half-filled attractive-U case, and again derive the 
resulting expressions for the charge and spin stiffnesses. Lastly, we discuss how 
the repulsive-U corrections relate to those of a Heisenberg model with toroidal 
boundary conditions. 
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The  Bethe ansatz  a p p r o a c h  has emerged as one of most  powerful  techni-  
ques for t rea t ing 1D q u a n t u m  systems. The me thod  was first used by Bethe 
to solve the i so t ropic  Heisenberg  H a m i l t o n i a n  (1) and  was subsequent ly  
app l ied  to several  o ther  models.  The a p p r o a c h  was deve loped  further in an 
a lgebra ic  manne r  by  Baxter  (2) and  the Russ ian  school,  (3) giving rise to the 
q u a n t u m  inverse scat ter ing m e t h o d  (QISM) .  This a lgebra ic  v iewpoint  
made  possible  the so lu t ion  of  add i t iona l  models  that  in pr inciple  were very 
difficult to solve using the t rad i t ional ,  or  coord ina t ive  Bethe anzatz  (CBA),  
approach .  Recently,  Sklyanin  (4) extended the Q I S M  to include general ized 
b o u n d a r y  condi t ions  (see also refs. 5 and  6 for the CBA approach) .  These 
general ized b o u n d a r y  condi t ions  have p roven  useful in the s tudy of confor-  

real  invar ian t  models.  (7) However ,  one mode l  that  remained  unsolved  by 
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the QISM is the Hubbard chain with toroidal boundary conditions (HTB). 
The Hubbard model with periodic boundary conditions was originally 
solved by Lieb and Wu (s) using the CBA approach. We also use the CBA 
approach here to solve the HTB, primarily exploring how the boundary 
conditions affect the Bethe ansatz equations and the finite-size corrections. 

The HTB Hamiltonian is defined by 

L - - 1  L 

H=E E (cLc,+l,o+h.c)+v Z cbe,,Te  c,,  
~r l = 1  / = 1  

~ ~L,~I,~ + h.c.) (1) 
r 

where L is the lattice size; cr refers to the spin indices T and $; and the 0~ 
(0 r and 0+) refer to the boundary condition phases on the up and down 
electrons. In order to diagonalize the model, we use the Bethe ansatz wave 
function 

~(xl ..... xNIQ1 ..... Q N ) = ~  A(Q[P)exp(i ~ xojkpj ) (2) 
P \ j = l  

Here, (xl,...,XNIQ1,...,QN) refers to one of the N! permutations 
Q = {Q1,.-., QN} of the N components of (x, ..... xN), where (xl ..... XN) 
denotes the locations and spin states of the N total number of electrons; the 
kpj refer to a permutation P =  {P1 ..... PN} of the N conduction electron 
momenta, given by the N components (kl ..... kN); and A(Q I P) is the 
amplitude associated with the permutations. We take the boundary condi- 
tions into account by stipulating 

exp(ikeuL ) A(QI P) = {exp(i0,) (~QN, N 2f- exp(i0,) 

x(1--6QN.N)} A(Q'IP') 

where Q' and P' are cyclic permutations of Q and P 
[Q'= (QN, Q1 ..... Q N - 1 )  and P ' = ( P N ,  P1 ..... PN-I)]. In analogy to Lieb 
and Wu, (8) we then obtain the spectrum of the HTB Hamiltonian 
parametrized in terms of a set {2j, kj} of variables that satisfy the so-called 
nested Bethe ansatz equations 

sin(kj) - 2 8 + iU/4 exp( ikj ) exp(i0,) a=l sin(kj) --- ~ (4) 

for j = 1 ..... N and 

exp[i(O,-O,)] ~I 2J--2a-iU/2 (-I 2j-sin(k~)-iU/4 
~=~.~j2j-2~+iU/2- = 1 2j-sin(k~)+iU/4 (5) 
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fo r j  = 1 ..... M, where M is the number of down electrons, with the resulting 

N 

E(O~, 0+, N, M, L ) =  - 2  ~ cos(kj) (6) 
j =  1 

As a check on our procedure, 3 we verified that ground-state energies for 
various fillings were the same as those obtained from exact diagonaliza- 
tions of four-site and six-site systems. 

The phases 0 T and 0+ enter Eqs. (4) and (5) in a seemingly different 
way, leading us to explore how the  spectrum is changed if 0 T and 0~ are 
interchanged. A straightforward manipulation of Eqs. (4) and (5) gives 

N 

I-I exp[i(kj - k~) L]  = e x p [ i ( Z M -  N)(O~ - 0+)] (7) 
j = l  

where kj=kj(O~,O+) and kj=kj(O+,OT). In particular, when N=ZM,  
E(O T, 0+, N, M, L) = E(O+, 0~, N, M, L), in accordance with a simple 
relabeling of up and down particles. 

We note that these equations generalize to a Hubbard chain with 
arbitrary hopping phases between the sites, given by the Hamiltonian 

L 1 

/4-- Y E + h.c.) 
a l = 1  

L 

+ U ~  t * ~ Cl, TC/,TCl, lCl, , + ~ (e'q~Llc~,oel,,~ + h.c.) (8) 
l = 1  a 

This follows from the simple canonical transformation (1~ 

Ulcr Cl ~ Uf~a i --  Cl 'a eiOl~ (9) 

for l =  2,..., L (the el.a are unchanged), where 

1--1 

- ( 1 0 )  

m = l  

The Hamiltonian of Eq. (8) then reduces to that of Eq. (1) with 

L 

L, 1 ~- 2 ~ l , l + l  (11) 
/ = 1  

3 Similar results, received by us in preprint form after the preparation of the first version of 
this manuscript, were independently derived by Shastry and Sutherland. (9) 
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The ground state of the HTB is given by a set of real solutions {2j, kj} 
of Eqs. (4) and (5), with finite-size corrections depending explicitly on 0, 
and 0~. In the half-filled sector (N=  L = 2M), we have used the method 
developed by De Vega and Woynarovich (1~'12/ to explicitly calculate these 
corrections. Omitting here the details of the calculation, we obtain for the 
leading finite-size correction of the ground-state energy 

L e ~ 1 7 6  T5 -6- - 6 \  2~ j j + ( h i g h e r o r d e r )  (12) 

for 0 T and 0; sufficiently small. Here, e~ is the ground-state energy per site 
in the L --* oe limit and ~ is the sound velocity 

2II(2rc/U) 

Io(2~/u) 

where I0 and I1 are the usual modified Bessel functions. 
From this correction, we can obtain explicit values for the charge 

stiffness (13~ Dc (also called the Drude weight) and the spin stiffness D~. 
For Oc, w e  recover 

o=ol =~ 
as the half-filled Hubbard chain is an insulator. For D~, we find 

D, = l i r a  ~L - = 
L ~  

(14) 

This is the same value that would be obtained by combining a conjecture 
of Shastry and Sutherland (9) (SS) with the analytic result of Takahashi (14) 
and Shiba (15) for the half-filled spin susceptibility. SS assume that "the 
energy E(O) remains quadratic.., in spite of a level crossing" out to at least 
0 T = ___0+ = _+re. The energy does not in general remain quadratic out to 
0~= +_0~= _+re, precisely because of the level crossing. (16) Rather, the 
procedure of SS is to "adiabatically" continue the state with 0, = 0, = 0 to 
states with larger values of 0, assuming that in this process E(O) always 
remains quadratic in 0. While this assumption has not been shown to be 
true in general, comparison with our results, which were obtained without 
unverified assumptions, indicate that it is at least true at half-filling. 

Further, we can use a canonical "particle-hole" transformation to 
obtain the charge and spin stiffnesses of the attractive-U half-filled 
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Hubbard model. To do SO, (17) we set dt, T = cz, T and dt,+= ( -1) /c~s  for all l, 
converting the Hamiltonian of Eq. (1) to 

L 1 L 
H'=Z E (d~,,dz+1~+h.c.)+(-U), , Z d~d,,Td*z,J.d;,l 

a l=1 l=1 
L 

+ U ~ d~d,, T + (ei~ +h.c.)+ (e i~ + +h.c.) 
l=1 

(15) 

This leads directly to the attractive-U corrections at half-filling, 

E'o(O T, 0~, L) 
L 

(" "~[ " ~ [ 1  rc~ 1 ( 0T+0+~al 
kL - / kO/L  

+ (higher order) (16) 

From this, we obtain the charge stiffness (or Drude weight) 

D'= ]i~m~ [rtL { 02E'~ --i }o=o]- Io(2rc/U)4II(2~t/U) (17) 

and the spin stiffness 

~ = 0 ,  Z )  1 ]_-0 
'J0=0.A 

Lastly, we note that the correction of Eq. (12) is analogous to that 
of the isotropic Heisenberg model with toroidal boundary conditions 
S~+x++_iSY+I=e+-i~'(S~++_iSY), where S x and S y are spin-l/2 Pauli 
matrices. (7/In fact, as U ~  0% Eqs. (4) and (5) through lowest order in 1/U 
give in the half-filled case decoupled spinless fermions with boundary phase 
0 = (0 T + 0~)/2, plus an isotropic Heisenberg model with toroidal boundary 
conditions ~ = 0 T - 0~, as the value of sin(k) in Eqs. (4) and (5) is always 
bounded for real k. However, because a charge gap opens in the half-filled 
case (8) for all values of finite U, charge degrees of freedom then give no 
contribution to the leading finite-size corrections, and the analogy to the 
Heisenberg model with toroidal boundary conditions (18) persists for all 
values of U. 

In summary, we have derived the Bethe ansatz equations for Hubbard 
chains with toroidal boundary conditions. We noted that these equations 
apply to Hubbard chains with arbitrary hopping phases between the sites. 
Using the equations, we derived the leading finite-size corrections to the 
ground-state energy in both the repulsive-U and attractive-U half-filled 
cases. We then utilized these corrections to obtain analytic expressions for 
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the charge stiffness (Drude  weight)  and  the spin stiffness of the repuls ive-U 
and a t t r ac t ive -U models  at half-filling. Lastly,  we discussed how the 
repuls ive-U correc t ions  relate to those of a Heisenberg  chain with to ro ida l  
b o u n d a r y  condi t ions .  Fu tu re  work  may  include genera l iza t ions  to H u b b a r d  
systems with higher  degeneracy.  
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